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Abstract

Tuberculosis (TB) is a contagious disease, caused by Mycobacterium tuberculosis (MTB) that has 
infected and killed a lot of people in the past. At present treatments against TB are available at a very low 
cost. Since these chemical drugs have many adverse effects on health, more attention is now given on 
the plant-derived phytochemicals as potential agents to fight against TB. In this study, 5 phytochemicals, 
4-hydroxybenzaldehyde, benzoic acid, bergapten, psoralen, and p-hydroxybenzoic acid, are selected 
to test their potentiality, safety, and efficacy against two potential targets, the MTB RNA polymerase 
and enoyl-acyl carrier protein (ACP) reductase, the InhA protein, using various tools of in silico biology. 
The molecular docking experiment, drug-likeness property test, ADME/T-test, P450 SOM prediction, 
pharmacophore mapping, and modeling, solubility testing, DFT calculations, and PASS prediction study 
had confirmed that all the molecules had the good potentiality to inhibit the two targets. However, two 
agents, 4-hydroxybenzaldehyde and bergapten were considered as the best agents among the five 
selected agents and they also showed far better results than the two currently used drugs, that function 
in these pathways, rifampicin (MTB RNA polymerase) and isoniazid (InhA protein). These two agents can 
be used effectively to treat tuberculosis.
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INTRODUCTION

Tuberculosis (TB) is an ancient disease that plagued 
mankind many times in the past. It was responsible 
for many great epidemics. Mycobacterium tuberculosis 
(MTB) is the bacteria that is responsible for tuberculosis 
disease. These bacteria may have killed more people than 
any other microbial pathogens [1]. However, at present, 
tuberculosis is a preventable as well as a curable disease, 
which is possible at a very low cost. Tuberculosis is a 
highly contagious disease that can transmit via cough, 
spit, and sneezes of the infected person. MTB primarily 
infects the lungs [2-4]. If the disease is found in the 
lungs, then it is called pulmonary TB. However, TB can 
be found at other locations of the body. Such TB is called 
extra-pulmonary TB. Several antibiotics are used to 
fight against MTB. However, a new TB has emerged in 
recent years, which is resistant to multiple drugs that are 

commonly used in TB treatment. This new TB is called 
multidrug-resistant tuberculosis (MDR-TB). At present, 
rifampicin, isoniazid, pyrazinamide, and ethambutol are 
used all together to treat tuberculosis. However, as the 
MDR-TB is found to be resistant to multiple drugs that are 
used in the treatment of normal TB, other sets of drugs 
are used to treat the MDR-TB [5-7]. Rifampicin inhibits 
bacterial growth by inhibiting the RNA polymerase 
enzyme. RNA polymerase enzyme is responsible for 
synthesizing an RNA strand from a DNA strand by the 
process known as transcription (Figure 1). Ethambutol 
exerts its effects by inhibiting the transfer of mycolic 
acids into the cell wall of MTB as well as by changing 
the lipid metabolism of the bacteria. Pyrazinamide 
disrupts the membrane energetics and membrane 
transport. Thus, pyrazinamide shortens TB therapy [8,9]. 
Isoniazid, a drug used for treating TB, inhibits bacterial 
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growth by inhibiting InhA protein, an enoyl-acyl carrier 
protein (ACP) reductase. The InhA protein is involved 
in the type II fatty acid biosynthesis pathway as well as 
mycolic acid synthesis which is an essential component 
of the bacterial cell membrane [10,11]. In the mycolic 
acid synthesis pathway, two types of fatty acid synthase 
(FAS) enzymes are involved: FAS I and FAS II. The FAS I 
enzyme generates the starting material of the mycolic 
acid synthesis, acetyl-CoA. The acyl-CoA is converted to 
3-ketoacyl-ACP by Kas III enzyme (beta-ketoacyl-ACP 
synthase III). The 3-ketoacyl-ACP then enters into a cyclic 
reaction catalyzed by the FAS II enzyme. 3-ketoacyl-ACP 
is converted into 3R-hydroxyacyl-ACP by beta-ketoacyl-
ACP reductase enzyme, MabA. The 3R-hydroxyacyl-ACP is 
later converted to trans-2-enol-ACP by beta-hydroxyacyl-
ACP dehydratases, HadAB and HadBC. Next, the trans-2-
enol-ACP is converted to acetyl-ACP by the InhA protein. 
The acyl-ACP can be converted to either 3-ketoacyl-ACP 
to start the cycle again (catalyzed by beta-keto-acyl-
ACP synthetases, KasA and KasB proteins), or it can be 
converted to higher chained ACP like C18-ACP and later 
the C18-ACP forms ever higher chained ACP like C48-ACP 
to C62-ACP. Moreover, FAS I also generate carboxylated 
C26-CoA, which together with C48-C62-ACP, undergoes 
condensation/reduction reaction and forms mycolic 
acid (Figure 2). The inhibitors of InhA enzyme acts 
by inhibiting InhA and thus prevents the mycolic acid 
synthesis [12-14].

Computational methods are now extensively used in 
drug R&D processes. Such virtual screening methods 
reduce both time and cost of the drug discovery and 
development processes. Computational simulation tools 
are used in designing more than 50 drugs to this date and 
many of them have received FDA approval. Molecular 
docking predicts the interaction, pose, and conformation 
of a ligand within the binding site of a target molecule. 
After estimating the interactions, the software assigns 
scores to each of the bound ligands with a specified 
algorithm which reflects the binding affinity. Lowest 
score of binding (lowest docking score) represents the 
most appreciable interaction between the ligand and 
receptor [15,16].

Natural agents from plants like 4-hydroxybenzaldehyde, 
benzoic acid, bergapten, Psoralen, p-hydroxybenzoic acid 
and many other compounds are proved to exhibit anti-
tuberculosis properties in various studies [17-19]. The 
agents can be extracted from a variety of plant sources 
(Table 1). In this experiment, the two commercially 
available and mostly used drugs, rifampicin against MTB 
RNA polymerase and isoniazid against the InhA protein, 
were used as controls. The mentioned five ligands: 
4-hydroxybenzaldehyde, benzoic acid, bergapten, psoralen 
and p-hydroxybenzoic acid, are used to dock against the 
MTB RNA polymerase and the InhA protein to test their 
efficacy and potentiality against the enzymes. Later, the two 
best ligands, each against one enzyme, were determined 

Figure 1: The MTB RNA polymerase functions in the transcription of the MTB DNA. Inhibitors of RNA polymerase can block the function 
of RNA polymerase, thus aid in inhibiting the bacterial growth.
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by analyzing the various tests that are conducted in the 
experiment and the two ligands were compared with the 
control to test their efficiency to inhibit TB.

No. Name of the anti-tuberculosis 
agent Plant source

1 4-hydroxybenzaldehyde Cinnamomum kotoense
2 Benzoic acid Hibiscus taiwanensis
3 Bergapten Fatoua pilosa
4 Psoralen Fatoua pilosa
5 p-hydroxybenzoic acid Microtropis fokienensis

Table 1: Table showing anti-tuberculosis agents with their respective 
plant sources.

MATERIALS AND METHODS

By applying Maestro-Schrödinger Suite 2018-4, Ligand 
preparation, Grid generation, Glide docking, and 2D 
representations of the best pose interactions between 
the ligands and their particular receptors were 
achieved. Using Discovery Studio Visualizer [20,21], the 
3D representations of the superior pose interactions 
between the ligands and their receptors were visualized. 
2D structures of the ligands were downloaded in SDF 
format from PubChem (https://pubchem.ncbi.nlm.nih.
gov). Besides, from the protein data bank (www.rcsb.
org), the two receptors were downloaded.

Preparation of Protein

From protein data bank (www.rcsb.org), the 3D 
structure of InhA protein (PDB ID: 2NSD) and MTB RNA 
polymerase (PDB ID: 6M7J) were downloaded in PDB 
format. Preparation and refinement of these proteins 
were carried out using the Protein Preparation Wizard 
in Maestro Schrödinger Suite 2018-4 [22]. Assignment of 
bond orders and the addition of hydrogens to heavy atoms 
were conducted. The conversion of Selenomethionines to 
methionines as well as deletion of water was performed. 
The structure was finally optimized and, next, minimized 
applying force field OPLS_2005.

Ligand Preparation and Receptor Grid Generation

The 2D conformations of 4-hydroxybenzaldehyde 
(PubChem CID: 126), Benzoic acid (PubChem CID: 243), 
Bergapten (PubChem CID: 2355), Psoralen (PubChem 
CID: 6199), and p-hydroxybenzoic acid (PubChem CID: 
135) were downloaded from PubChem (www.pubchem.
ncbi.nlm.nih.gov), maintaining sequestration. With the 
help of the Galaxy 3D Structure Generator v2018.01-beta 
tool of online server Molinspiration chemoinformatics 
(https://www.molinspiration.com/), the visualization of 
3D conformers of the ligands was done. Afterward, these 

Figure 2: The involvement of InhA protein in the mycolic acid synthesis pathway. Here, FAS I and FAS II are fatty acid synthase I and II, 
respectively, MabA is a beta-ketoacyl-acyl carrier protein (ACP) reductase, HadAB and HadBC are beta-ketoacyl_ACP dehydratases, Kas 
A, Kas B and Kas III are beta-keto-acyl-ACP synthetases. Inhibitors of InhA protein can interfere with the formation of mycolic acid, which 
an important component of MTB, thus inhibiting the MTB growth.
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structures were prepared using the LigPrep function of 
Maestro Schrödinger Suite 2018-4 [23].

Generally, the grid confines the active site to shortened 
particular receptor protein areas for the ligand to dock 
precisely. A grid was produced in Glide utilizing default 
Van der Waals radius scaling factor 1.0 and charge cutoff 
0.25 that was subsequently exposed to the OPLS_2005 
force field. A cubic box was created surrounding the 
active site (reference ligand active site). After that, for 
conducting a docking test, the grid box volume was 
customized to 15×15×15.

Glide Standard Precision (SP) Ligand Docking and 
MM-GBSA Prediction

SP adaptable glide docking was performed by applying 
Glide in Maestro Schrödinger Suite 2018-4. The Van der 
Waals radius scaling factor and charge cutoff was adjusted 
to 0.80 and 0.15 accordingly for each ligand molecule. 
Using Maestro Schrödinger Suite 2018-4, the 2D and 
3D pose interactions between the ligands and receptors 
were visualized. Moreover, the ligand molecule’s 
interaction with different amino acids and their bonds 
was analyzed using Discovery Studio Visualizer. The 
molecular mechanics- generalized born and surface area 
(MM-GBSA) tool was applied for determining the ΔGBind 
scores. The MM-GBSA study was conducted by Maestro-
Schrödinger Suite 2018-4.

Ligand Based Drug Likeness Property and ADME/
Toxicity Prediction

The analysis of each ligand’s molecular structure was 
conducted using the SWISSADME server (http://
www.swissadme.ch/) to ensure whether they abide by 
Lipinski’s rule of five or not, accompanying a few other 
properties. Calculation of Different physicochemical 
properties of ligand molecules were performed using 
OSIRIS Property Explorer (https://www.organic-
chemistry.org/prog/peo/). The drug-likeness properties 
of the chosen ligand molecules were analyzed by the 
SWISSADME server (http://www.swissadme.ch/) 
and the OSIRIS Property Explorer (https://www.
organic-chemistry.org/prog/peo/) (Organic Chemistry 
Portal. https://www.organic-chemistry.org/prog/peo. 
10/10/2019. Accessed: 09 August 2019). Using online 
based servers i.e., admetSAR (http://lmmd.ecust.edu.
cn/admetsar2/) and ADMETlab (http://admet.scbdd.
com/), the ADME/T for every ligand molecule was 
conducted for predicting their several pharmacodynamic 
and pharmacokinetic properties. Both admetSAR and 
ADMETlab servers are widespread tools for determining 

the absorption, distribution, metabolism, excretion, and 
toxicity of different chemical compounds [24,25].

P450 Site of Metabolism (SOM) Prediction

The P450 Site of Metabolism (SOM) of the selected 
ligand molecules was checked by an online tool, 
RS-WebPredictor 1.0 (http://reccr.chem.rpi.edu/
Software/RS-WebPredictor/) [26]. The probable sites of 
metabolism on selected ligands were determined for the 
CYP 450 enzyme family’s nine isoforms: CYPs 1A2, 2A6, 
2B6, 2C19, 2C8, 2C9, 2D6, 2E1, and 3A4.

Pharmacophore Modelling

The five ligands’ pharmacophore modelling was performed 
by the Phase pharmacophore perception engine of Maestro-
Schrödinger Suite 2018-4. The pharmacophore modelling 
was hand-operated. The radii sizes were maintained as 
the van der Waals radii of receptor atoms to conduct this 
process. The radii scaling factor was set to 0.50, receptor 
atoms whose surfaces are inside 2.00 Å of the ligand 
surface were neglected, and the volume shell thickness 
was restricted to 5.00 Å. The 2D and 3D pharmacophore 
modelling were performed for each ligand molecule.

Prediction of Solubility

The solubility testing of the five ligands was performed 
using the QikProp wizard of Maestro-Schrödinger 
Suite 2018-4. In solubility prediction, the selected 
ligands’ solubility was determined in various interfaces 
like hexadecane/gas interface, octanol/gas interface, 
octanol/water interface, etc.

DFT Calculation
Minimized ligand structures attained from LigPrep were 
used for DFT calculation by the application of Jaguar 
panel of Maestro Schrödinger Suite v11.4, where Becke’s 
three-parameter exchange potential and Lee-Yang-Parr 
correlation functional (B3LYP) theory with 6-31G* basis 
set was used [27,28]. Quantum chemical properties, 
particularly surface properties (MO, density, potential) 
as well as Multipole moments were determined 
accompanied by HOMO (Highest Occupied Molecular 
Orbital) and LUMO (Lowest Unoccupied Molecular 
Orbital) energy. Afterward, the analysis of global frontier 
orbital was performed; also, the calculation of hardness 
(η) and softness (S) of selected molecules was done using 
the following equation according to Koopmans theorem 
and Parr and Pearson interpretation [29,30].

η = (HOMOℇ-LUMOℇ)/2,

S = 1/ η
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2.09. PASS (Prediction of Activity Spectra for Substances) 
Prediction Study

The PASS (Prediction of Activity Spectra for Substances) 
prediction was performed only for the two best-selected 
ligands that displayed the best result in inhibiting their 
individual receptors, MTB RNA polymerase as well as 
InhA protein. PASS prediction was conducted by using 
the PASS-Way2Drug server (http://www.pharmaexpert.
ru/passonline/), which is operated by canonical SMILES 
from PubChem server (https://pubchem.ncbi.nlm.
nih.gov/) [31]. For conducting PASS prediction, Pa 
(probability “to be active”) was hold to more than 70% 
because the Pa > 70% threshold gives highly reliable 
prediction [32]. In the PASS prediction study, the 
probable biological activities and the probable adverse 
consequences of the selected ligands were predicted. The 
LD50 and Toxicity class prediction was completed using 
the ProTox-II server (http://tox.charite.de/protox_II/) 
[33].

RESULTS

Molecular Docking Study and Ramachandran Plot 
Analysis

All the selected ligand molecules and the controls were 
docked successfully with their target receptors, MTB 
RNA polymerase and MTB InhA protein. The controls, 
rifampicin and isoniazid generated docking scores 
of -4.813 Kcal/mol (with MTB RNA polymerase) and 
-6.018 Kcal/mol (with the InhA protein), respectively. 
4-hydroxybenzaldehyde yielded docking scores of -6.062 
Kcal/mol with RNA polymerase and -7.161 Kcal/mol 
with InhA protein. Benzoic acid showed docking scores 
of -5.383 Kcal/mol with RNA polymerase and -7.302 
Kcal/mol with InhA protein. Bergapten came up with the 
docking scores of -5.290 Kcal/mol when docked against 
RNA polymerase and -8.068 Kcal/mol with InhA protein. 
Psoralen generated docking scores of -5.731 Kcal/mol 
with RNA polymerase and -7.102 Kcal/mol when docked 
against InhA protein. Moreover, p-hydroxybenzoic acid 
generated docking scores of -4.617 Kcal/mol with RNA 
polymerase and -7.538 Kcal/mol with InhA protein. From 
the docking study, it is clear that 4-hydroxybenzaldehyde 
generated the lowest score of -6.062 Kcal/mol with RNA 
polymerase and bergapten generated the lowest score of 
-8.068 Kcal/mol with InhA protein.

On the other hand, all the ligands and the controls also 
gave successful results in the MM-GBSA study. In the 
MM-GBSA study, the ΔGBind score was determined. 
Rifampicin and isoniazid generated ΔGBind scores of 

-34.317 Kcal/mol and -29.728 Kcal/mol, respectively. 
4-hydroxybenzaldehyde generated ΔGBind scores of 
-53.070 Kcal/mol with RNA polymerase and -34.240 
Kcal/mol with InhA protein. Benzoic acid showed 
ΔGBind scores of -40.810 Kcal/mol with RNA polymerase 
and -40.440 Kcal/mol with InhA protein. Bergapten 
generated ΔGBind scores of -42.390 Kcal/mol and 
-57.590 Kcal/mol with InhA protein. Psoralen generated 
ΔGBind scores of -43.150 Kcal/mol with RNA polymerase 
and -55.330 Kcal/mol with InhA protein. Furthermore, 
p-hydroxybenzoic acid generated ΔGBind scores of 
-37.53 Kcal/mol with RNA polymerase and -45.740 Kcal/
mol with InhA protein. The MM-GBSA study confirmed 
that 4-hydroxybenzaldehyde also generated the lowest 
ΔGBind score of -53.070 Kcal/mol like the docking study 
with RNA polymerase as well as bergapten generated 
the lowest ΔGBind score of-57.590 Kcal/mol with InhA 
protein.

Bergapten formed the highest number of hydrogen 
bonds with both RNA polymerase (05) as well as InhA 
protein (08). Bergapten also interacted with the highest 
number of amino acids within the binding pocket of RNA 
polymerase. It interacted with 05 amino acids: Arg 421, 
Val 422, Leu 1089, Ile 1253 and Gly 1069 when docked 
against MTB RNA polymerase. On the other hand, it also 
interacted with 07 amino acids within the binding pocket 
of InhA protein: Lys 165, Gly 96, Ile 194, Gly 192, Ala 
191, Ile 21 and Met 147. 4-hydroxybenzaldehyde also 
interacted with 07 amino acids when docked against 
InhA protein: Met 147, Lys 165, Ile 194, Ile 21, Pro 193, 
Gly 192 and Ala 191. The docking scores, glide energy 
and glide ligand efficiency of the controls are listed in 
Table 2. The docking scores, glide energies, glide ligand 
efficiency scores, ΔGBind scores, number of hydrogen 
bonds, interacting amino acids as well as different types 
of bonds and their distances are listed in Table 3. Figures 
3-5 illustrate the 2D and 3D representations of the best 
interaction between the ligands and receptors as well as 
the various amino acids that take part in the interaction.

Druglikeness Properties

All the ligands obeyed the Lipinski’s rule of five: 
molecular weight (acceptable range: ≤ 500), the total 
number of hydrogen bond donors (acceptable range: ≤5), 
total number of hydrogen bond acceptors (acceptable 
range: ≤10), lipophilicity (LogP, acceptable range: 
≤5) and molar refractivity (40-130) [34]. Bergapten 
had the highest molecular weight of 216.19 g/mol. 
4-hydroxybenzaldehyde and benzoic acid showed a 
similar molecular weight of 122.12 g/mol, which was 
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Name of the control Name of the receptors
Docking score/ 
binding energy (Kcal/
mol)

Glide energy 
(Kcal/mol)

Glide ligand 
efficiency (Kcal/
mol)

MM-GBSA 
(ΔGBind Score 
Kcal/mol)

Rifampicin (PubChem CID: 
135398735) (Control-1)

MTB RNA Polymerase (PDB 
ID: 6M7J) -4.813 -25.247 -0.503 -34.317

Isoniazid (PubChem CID: 3767) 
(Control-2) InhA protein (2NSD) -6.018 -29.728 -0.602 -25.12

Table 2: Results of molecular docking between the controls and their receptors.

Name of 
receptor

Name of 
ligand

Docking 
score/ 

binding 
energy 

(Kcal/mol)

Glide 
energy 

(Kcal/mol)

Glide 
ligand 

efficiency 
(Kcal/mol)

MM- GBSA 
(ΔGBind 

Score 
Kcal/mol)

No of 
hydrogen 

bonds 
with 

amino 
acids

Interacti ng 
amino acids

Bond 
distance 

in Å

Types of 
bonds

MTB RNA 
Polymerase 
(PDBID: 6M7J)

4- hydroxybenz 
aldehyde 

(PubChemCID: 
126)

-6.062 -21.269 -0.674 -53.07 4

Gln 882 2.56 Conventional

Lys 1249
4.5 Pi-Alkyl

3.35 Pi-Cation
Asp 879 1.65 Conventional

Trp 1074
4.92 Pi-Pi stacked
3.58 Pi-Pi stacked

Benzoic acid 
(PubChemCID: 

243)
-5.383 -21.786 -0.598 -40.81 2

Gly 408 2.72 Conventional

Ala 1224
2.15 Conventional
4.28 Pi-Alkyl

Leu1221 5.28 Pi-Alkyl
Ile 1253 5.39 Pi-Alkyl

Bergapten 
(PubChemCID: 

2355)
-5.29 -30.331 -0.331 -42.39 5

Arg 421 2.19 Conventional
Val 422 2.78 Conventional

Leu 1089
5.02 Pi-Alkyl
4.93 Pi-Alkyl

Ile 1253 5.35 Pi-Alkyl
Gly 1069 2.55 Carbon

 

Psoralen 
(PubChem CID: 

6199)
-5.731 -26.147 -0.409 -43.15 4

Leu 1089
4.23 Pi-Alkyl
4.26 Pi-Alkyl
5.38 Pi-Alkyl

Cys 1073 5.33 Pi-Alkyl
Gln 1069 2.66 Carbon
Lys 420 2.06 Conventional

Gly 419
2.71 Carbon
2.84 Conventional

p- hydroxybenz 
oic acid 

(PubChem CID: 
135)

-4.617 -24.02 -0.462 -37.53 3

Ile 1253 2.14 Conventional
Leu 1089 2.9 Pi-Sigma

Lys 420
5.26 Pi-Alkyl
2.47 Pi-Donor

Gly 419
2.69 Carbon
2.43 Conventional

InhA protein 
(2NSD)

4-hydroxybenz 
aldehyde 

(PubChem CID: 
126)

-7.161 -26.863 -0.796 -34.24 4

Lys 165 2.07 Conventional
Met 147 5.41 Pi-Alkyl

Ile 21 5.39 Pi-Alkyl
Ile 194 2.05 Conventional
Pro 193 2.86 Carbon
Gly 192 2.62 Carbon
Ala 191 5.41 Pi-Alkyl

Table 3: Results of molecular docking between ligands and receptors. All the selected ligands were docked successfully against the MTB RNA 
polymerase and InhA protein.
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InhA protein 
(2NSD)

Benzoic acid 
(PubChem CID: 

243)
-7.302 -29.106 -0.811 -40.44 3

Ile 21 5.35 Pi-Alkyl
Ala 191 4.79 Pi-Alkyl

Pro 193
2 Conventional

2.7 Carbon
Ile 194 2.18 Conventional

Bergapten 
(PubChem CID: 

2355)
-8.068 -35.218 -0.304 -57.59 8

Lys 165 2.14 Conventional
Gly 96 2.95 Carbon

Ile 194
3.09 Carbon
2.81 Carbon

Gly 192 2.25 Carbon

Ala 191
2.87 Carbon
4.4 Pi-Alkyl

Ile 21 5.08 Pi-Alkyl

Met 147
5.3 Pi-Alkyl
5.4 Pi-Alkyl

Psoralen 
(PubChem CID: 

6199)
-7.102 -32.59 -0.507 -55.33 2

Pro 193 2.88 Carbon
Ile 194 1.96 Conventional

Ile 21
5.36 Pi-Alkyl
5.21 Pi-Alkyl

Ala 191 5.17 Pi-Alkyl

Met 147
5.22 Pi-Alkyl
5.25 Pi-Alkyl

p- hydroxybenz 
oic acid 

(PubChem CID: 
135)

-7.538 -32.452 -0.754 -45.74 4

Ile 21 5.39 Pi-Alkyl
Ala 191 5 Pi-Alkyl
Asp 148 1.85 Conventional

Ile 194
1.79 Conventional
1.89 Conventional

Pro 193 2.55 Carbon

the lowest among all the ligands. The highest consensus 
Log Po/w value was shown by bergapten (2.16), and the 
lowest value was generated by p-hydroxybenzoic acid 
of 1.05. However, bergapten showed the lowest LogS 
value of -2.93, and 4-hydroxybenzaldehyde showed the 
LogS value of -1.87. Both 4-hydroxybenzaldehyde and 
benzoic acid had two hydrogen bond acceptors each 
and one hydrogen bond donors each. Bergapten had 
four hydrogen bond acceptors, and psoralen had three 
hydrogen bond acceptors; however, both of them did not 
have any hydrogen bond donors. P-hydroxybenzoic acid 
had three hydrogen bond acceptors and two hydrogen 
bond donors. P-hydroxybenzoic acid possessed the 
largest topological polar surface area (TPSA) of 57.53 
Å². However, both 4-hydroxybenzaldehyde and benzoic 
acid showed similar TPSA value of 37.30 Å², which was 
the lowest TPSA value. Benzoic acid had the highest 
drug-likeness score of -1.4, and 4-hydroxybenzaldehyde 
had the lowest score of -6.31. P-hydroxybenzoic acid 
generated the highest drug score of 0.35, and bergapten 
generated the lowest drug score of 0.10. However, only 
bergapten was found to be reproductive effective and 
tumorigenic. Furthermore, only 4-hydroxybenzaldehyde 
and benzoic acid were irritant, and all the ligands were 

found to be mutagenic. The values of the drug-likeness 
properties are listed in Table 4.

ADME/T Test

The results of the ADME/T test are listed in Table 
5. In the absorption section, all the selected ligands 
showed Caco-2 permeability and human intestinal 
absorption capability. However, all of them were not p-gp 
inhibitor as well as p-gp substrate. In the distribution 
section, all of the ligands showed blood-brain barrier 
permeability. However, p-hydroxybenzoic acid and 
4-hydroxybenzaldehyde showed relatively low plasma 
protein binding capability than the other three ligands. In 
the metabolism section, 4-hydroxybenzaldehyde, benzoic 
acid and p-hydroxybenzoic acid were non-inhibitors as 
well as non-substrate for all the CYP450 isoenzymes. 
However, due to the unavailability of data in the server, 
the CYP450 1A2 and CYP450 2C19 substrates were not 
determined. However, bergapten and psoralen showed 
quite similar results in the metabolism section with 
inhibitory effects on the CYP450 1A2, 3A4, 2C9, 2D6 and 
2C19. In the excretion section, 4-hydroxybenzaldehyde 
had the highest half-life of 1.7 h. In the toxicity section, 
none of the molecules was hERG blocker and only 
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Figure 3: 2D (left) and 3D (right) representations of the best pose interactions between the ligands and the receptor, MTB RNA polymerase. A. 
interaction between 4-hydroxybenzaldehyde and RNA polymerase, B. interaction between benzoic acid and RNA polymerase, C. interaction 
between bergapten and RNA polymerase, D. interaction between psoralen and RNA polymerase, E. interaction between p-hydroxybenzoic 
acid and RNA polymerase. Colored spheres indicate the type of residue in the target: Red-Negatively charged (Asp, Glu), Blue- Polar (Ser, 
Thr, Gln), Green-Hydrophobic (Ala, Leu, Val, Ile, Trp, Phe, Cys, Pro), Light Purple-Basic (Lys, Arg), Gray- Water molecules, Darker grey-
metal atom, Light Yellow- Glycine, Deep Purple-Unspecified molecules and the Grayish circles represent Solvent exposure. Interactions are 
shown as coloured lines- Solid pink lines with an arrow- H-bond in the target (backbone), Dotted pink lines with an arrow- H-bond between 
receptor and ligand (side-chain), Solid pink lines without arrow- Metal co-ordination, Green line- Pi-Pi stacking interaction, Green dotted lines-
Distances, Partially blue and red-coloured lines- Salt bridges. The grey sphere represents ligands exposed to solvent. The coloured lines 
show the protein pocket for the ligand according to the nearest atom. Interruptions of the lines indicate the opening of the pocket. In the 3D 
representations, the proteins are represented in the Solid ribbon model, and the ligands are represented in stick model.
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Figure 4: 2D (left) and 3D (right) representations of the best pose interactions between the ligands and the receptor, InhA protein A. 
interaction between 4-hydroxybenzaldehyde and InhA protein, B. interaction between benzoic acid and InhA protein, C. interaction 
between bergapten and InhA protein, D. interaction between psoralen and InhA protein, E. interaction between p-hydroxybenzoic acid 
and InhA protein. Coloured spheres indicate the type of residue in the target: Red-Negatively charged (Asp), Blue- Polar (Ser, Thr), Green-
Hydrophobic (Ala, Ile, Ph, Met, Pro), Light Purple-Basic (Lys), Gray-Water molecules, Darker grey-metal atom, Light Yellow- Glycine, Deep 
Purple- Unspecified molecules and the Grayish circles represent Solvent exposure. Interactions are shown as coloured lines- Solid pink 
lines with an arrow- H-bond in the target (backbone), Dotted pink lines with an arrow- H-bond between receptor and ligand (side-chain), 
Solid pink lines without arrow- Metal co-ordination, Green line- Pi-Pi stacking interaction, Green dotted lines- Distances, Partially blue 
and red-coloured lines- Salt bridges. A grey sphere represents ligands exposed to solvent. The coloured lines show the protein pocket 
for the ligand according to the nearest atom. Interruptions of the lines indicate the opening of the pocket. In the 3D representations, the 
proteins are represented in Solid ribbon model, and the ligands are represented in stick model.
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Figure 5: Figure illustrating the different types of bonds and amino acids that participate in the interaction between selected ligands 
and MTB RNA polymerase (left) as well as InhA protein (right). In this diagram, interacting amino acid residues of the target molecules 
are labeled. The dotted lines represent the interaction between receptor and ligand, including Purple- Pi-Sigma interaction, Green 
dotted lines- Conventional bond, Light pink- Alkyl/Pi-Alkyl interactions, Yellow- Pi-Sulfur/Sulphur-X interaction, Orange- Charge-Charge 
interaction, Red- Donor-Donor interaction, Deep pink- Pi-Pi stacked bond. Here, A. 4-hydroxybenzaldehyde, B. benzoic acid, C. bergapten, 
D. psoralen, E. p-hydroxybenzoic acid.

bergapten was found to be human hepatotoxic as well as 
Ames positive. However, bergapten and psoralen showed 
drug-induced liver injury capability.

P450 Site of Metabolism (SOM) Prediction

The P450 SOM prediction was carried out for the five 
selected ligand molecules and the SOM prediction was 
performed for CYPs 1A2, 2A6, 2B6, 2C19, 2C8, 2C9, 2D6, 
2E1 and 3A4. 4-hydroxybenzoic acid showed 6 SOMs 

for all the CYP450 isoenzymes, and both bergapten 
and psoralen showed 3 SOMs each, for all the CYP450 
isoenzymes. However, benzoic acid showed 6 SOMs 
for CYP450 1A2 and CYP450 2C8, 4 SOMs for CYP450 
2A6 and 5 SOMs for rest of the CYP450 isoenzymes. 
P-hydroxybenzoic acid showed 5 SOMs for CYP450 2A6, 
6 SOMs for CYP450 2E1 and CYP450 3A4 and 7 SOMs for 
the rest of the CYP450 isoenzymes. The results of P450 
SOM are listed in Table 6.
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Druglikeness properties 4-Hydroxybenzaldehyde Benzoic acid Bergapten Psoralen p-hydroxybenzoic acid
Lipinski’s rule of five Yes Yes Yes Yes Yes
Molecular weight (g/mol) 122.12 122.12 216.19 186.16 138.12
Concensus Log Po/w 1.17 1.44 2.16 2.12 1.05
Log S -1.87 -2.2 -2.93 -2.73 -2.07
Num. H-bond acceptors 2 2 4 3 3
Num. H-bond donors 1 1 0 0 2
Molar Refractivity 33.85 33.4 58.75 52.26 35.42
Ghose No (3 violations) No (3 violations) Yes Yes No (3 violations)
Veber Yes Yes Yes Yes Yes
Egan Yes Yes Yes Yes Yes
Muegge No (1 violation) No (1 violation) Yes No (1 violation) No (1 violation)
TPSA (Å²) 37.3 37.3 52.58 43.35 57.53
Druglikeness score -6.3 -1.4 -3.3 -3.2 -1.5
Drug score 0.17 0.21 0.1 0.27 0.35
Reproductive effective No No Yes (High risk) No No
Irritant Yes (High risk) Yes (High risk) No No No
Tumorigenic No No Yes (High risk) No No
Mutagenic Yes (High risk) Yes (High risk) Yes (High risk) Yes (High risk) Yes (High risk)

Table 4: Results of the druglikeness property studies of the selected ligand molecules.

Table 5: Results of the ADME/T studies of the selected ligand molecules.

Class Properties 4-Hydroxybenzaldeh 
yde (with probability)

Benzoic 
acid (with 
probability)

Bergapten (with 
probability)

Psoralen (with 
probability)

P-hydroxybenzoic 
acid

Absorption

Caco-2 permeability Positive (0.965) Positive (0.953) Positive (0.819) Positive (0.863) Positive (0.923)

Pgp-inhibitor Negative (0.987) Negative (0.989) Negative (0.878) Negative (0.934) Negative (0.986)

Pgp-substrate Negative (0.989) Negative (0.997) Negative (0.924) Negative (0.951) Negative (0.990)
HIA (Human Intestinal 
Absorption) Positive (0.990) Positive (0.981) Positive (0.991) Positive (0.988) Positive (0.983)

Distribution
PPB (Plasma Protein 
Binding) Good, 48.4% High, 77.7% High, 79.5% High, 85.3% Good, 55.6%

BBB (Blood–Brain Barrier) Positive (0.848) Positive (0.781) Positive (0.883) Positive (0.852) Negative (0.7620

Metabolism

CYP450 1A2 inhibition Negative (0.752) Negative (0.853) Positive (0.974) Positive (0.910) Negative (0.975)

CYP450 1A2 substrate - - - - -

CYP450 3A4 inhibition Negative (0.915) Negative (0.982) Positive (0.795) Positive (0.767) Negative (0.949)

CYP450 3A4 substrate Negative (0.795) Negative (0.879) Negative (0.607) Negative (0.753) Negative (0.826)

CYP450 2C9 inhibition Negative (0.985) Negative (0.986) Positive (0.825) Positive (0.534) Negative (0.969)

CYP450 2C9 substrate Negative (0.619) Negative (0.806) Negative (1.000) Negative (1.000) Negative (0.815)

CYP450 2C19 inhibition Negative (0.905) Negative (0.987) Positive (0.929) Positive (0.795) Negative (0.965)

CYP450 2C19 substrate - - - - -

CYP450 2D6 inhibition Negative (0.970) Negative (0.957) Positive (0.893) Positive (0.676) Negative (0.982)

CYP450 2D6 substrate Negative (0.729) Negative (0.885) Negative (0.815) Negative (0.844) Negative (0.873)

Subcellular localization Mitochondria Mitochondria Mitochondria Mitochondria Mitochondria

Excretion T1/2 (h) 1.7 1.5 0.2 1.423 0.773

Toxicity

hERG (hERG Blockers) Non-blocker (0.198) Non-blocker 
(0.169)

Non-blocker 
-0.344

Non-blocker 
-0.298 Non-blocker -0.238

H-HT (Human 
Hepatotoxicity) Negative (0.132) Negative (0.102) Positive (0.826) Negative (0.082) Negative (0.064)

Ames (Ames Mutagenicity) Negative (0.006) Negative (0.078) Positive (0.882) Negative (0.072) Negative (0.068)
DILI (Drug Induced Liver 
Injury) Negative (0.848) Negative (0.402) Positive (0.952) Positive (0.924) Negative (0.206)
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Pharmacophore Modelling

In the pharmacophore modelling experiment, all the 
ligands generated pharmacophore hypotheses while 
inhibiting both MTB RNA polymerase and InhA protein. 
4-hydroxybenzaldehyde generated 4-point hypothesis 
(features: A1, A2, D3, R4) with MTB RNA polymerase and 

formed 1 hydrogen bond, 1 pi-cation bond, 3 bad bonds 
and 1 ugly bond with the binding pocket of the protein. 
It generated 1-point hypothesis with the InhA protein 
(feature: A1) and formed 1 pi-pi interaction. Benzoic 
acid formed 4-point hypothesis (features: A1, A2, D3, R4) 
while inhibiting the MTB RNA polymerase and formed 1 

Names	 of P450
isoenzymes 4- Hydroxybenzaldehyde Benzoic acid Bergapten Psoralen P-Hydroxybenzoic acid

1A2

2A6

2B6

2C8

2C9

2C19

2D6

2E1

3A4

Table 6: The result of P450 site of metabolism prediction of the selected ligand molecules.
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hydrogen bond and 1 pi-pi interaction within the binding 
pocket of the receptor. Benzoic acid formed 2-point 
hypothesis (features: A2, D3) and formed 5 hydrogen 
bonds and 1 pi-pi interaction within the binding pocket of 
the receptor protein, InhA protein. Bergapten generated 
6-point hypothesis (features: A1, A2, A4, H5, R7, R8) with 
MTB RNA polymerase and formed 2 bad bonds. However, 
it generated a 3-point hypothesis (features: A2, H5, R7) 
with the InhA protein and formed 7 hydrogen bonds, 1 pi-
pi interaction and 3 bad bonds within the binding pocket 

of the receptor. Psoralen generated 4-point hypothesis 
(A1, A2, R4, R6) with MTB RNA polymerase, however, 
it didn’t form any bond with the protein. On the other 
hand, it generated a 3-point hypothesis (features: A1, 
R4, R6) with InhA protein and formed 1 pi-pi interaction, 
1 ugly bond and 3 bad bonds. P-hydroxybenzoic acid 
generated a 4-point hypothesis (A1, A2, D4, R6) with 
MTB RNA polymerase and formed 2 hydrogen bonds and 
3 bad bonds. Moreover, it generated a 3-point hypothesis 
(features: A2, D4, D5) with the InhA protein and formed 

Figure 6: Figure showing the 2D (left) and 3D (right) representations of the pharmacophore hypotheses generated by the ligands while 
inhibiting the MTB RNA polymerase. Here, A. 4-hydroxybenzaldehyde, B. benzoic acid, C. bergapten, D. psoralen, E. p-hydroxybenzoic 
acid. The interactions between the ligand and the receptor in the hypothesis were presented by dotted dashed lines, yellow colour- 
hydrogen bonds and green colour- pi-cation interaction. The bad contacts between the ligands and the pharmacophore are represented. 
The pharmacophore modelling was carried out by Maestro-Schrödinger Suite 2018-4.
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1 pi-pi interaction and 3 bad bonds within the binding 
pocket of the receptor. However, all the ligands also 
showed a significant number of good bonds with their 
receptor proteins (Figures 6 and 7).

Solubility Prediction

The results of the solubility test of all the ligands are listed 
in Table 7. Bergapten showed the highest QPlogPC16 score 
of 4.392 and 4-hydroxybenzaldehyde showed the lowest 
QPlogPC16 score of 2.298. Bergaptan also generated the 
highest QPlogPoct score of 9.129 and the second highest 

QPlogPoct score was showed by p-hydroxybenzoic acid. 
However, both benzoic acid and psoralen showed almost 
similar QPlogPoct results of 4.474 and 4.881, respectively. 
Bergapten and p-hydroxybenzoic acid also generated the 
highest and second-highest QPlogPw scores of 8.804 and 
6.296, respectively. However, 4-hydroxybenzaldehyde 
showed the highest QPlogPo/w value of 0.071 and 
p-hydroxybenzoic acid generated the highest QPlogS 
score of 0.948. Benzoic acid showed the highest score of 
CIQPlogS (-0.284) and bergapten generated the lowest 
CIQPlogS score of -0.883.

Figure 7: Figure showing the 2D (left) and 3D (right) representations of the pharmacophore hypotheses generated by the ligands while 
inhibiting the InhA protein. Here, A. 4-hydroxybenzaldehyde, B. benzoic acid, C. bergapten, D. psoralen, E. p-hydroxybenzoic acid. The 
interactions between the ligand and the receptor were presented by dotted dashed lines, yellow color- hydrogen bonds, and green color- 
pi-cation interaction. The wrong contacts between the ligands and the pharmacophore are represented. The pharmacophore modeling 
was carried out by Maestro-Schrödinger Suite 2018-4.
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a. Predicted hexadecane/gas partition coefficient 
(Acceptable range: 4.0 –18.0); b. Predicted octanol/
gas partition coefficient (Acceptable range: 8.0–35.0); 
c. Predicted water/gas partition coefficient (Acceptable 
range: 4.0–45.0); d. Predicted octanol/water partition 
coefficient (Acceptable range: –2.0 –6.5); e. Predicted 
aqueous solubility, S in mol dm–3 (Acceptable range: –6.5 
– 0.5); f. Conformation-independent predicted aqueous 
solubility, S in mol dm–3(Acceptable range: –6.5 –0.5).

DFT Calculations

Table 8 lists the detailed energy of HOMO, LUMO, Gap, 
hardness, and softness of the compounds. All the molecules 
successfully generated the HOMO-LUMO structures. 
The highest HOMO score or energy was showed by 
bergapten of -0.112 eV and the lowest was generated by 
p-hydroxybenzoic acid of -0.198 eV. Psoralen generated 
quite similar score of p-hydroxybenzoic acid of -0.197 
eV. 4-hydroxybenzaldehyde and benzoic acid showed 
similar scores of -0.174 eV. Psoralen generated the lowest 
LUMO score of 0.039 eV and p-hydroxybenzoic acid 
generated the highest LUMO score of 0.100 eV. However, 
p-hydroxybenzoic acid showed the highest gap score of 
0.298 eV and bergapten generated the lowest gap score 
of 0.164 eV. The molecules showed gap scores of quite 
similar results. 4-hydroxybenzaldehyde, benzoic acid and 
psoralen showed quite similar hardness scores of 0.114, 
0.115 and 0.118 eV respectively. P-hydroxybenzoic acid 
gave the highest hardness score of 0.149 eV and bergaten 
showed the lowest hardness score of 0.082eV. For this 
reason, bergapten generated the highest softness score of 
12.190 and p-hydroxybenzoic acid generated the lowest 
softness score of 6.710. Moreover, bergapten generated 

the highest dipole moment score of 7.186 debye and 
benzoic acid generated the lowest dipole moment score 
of 2.217 debye. The HOMO-LUMO representations of the 
ligands are shown in Figure 8.

PASS (Prediction of Activity Spectra for Substances) 
Prediction Study

In the PASS prediction study, the predicted LD50 value	
and toxicity class of 4-hydroxybenzaldehyde were not 
determined due to the unavailability of data in the server 
ProTox II. However, bergapten had the predicted LD50 
value of 8100 mg/kg and toxicity class of 6. However, the 
PASS prediction study was conducted for 10 intended 
biological activities and 5 toxic effects. To carry out the 
PASS prediction experiment, Pa > 0.7 was kept since 
this threshold give highly reliable prediction [32]. Both 
4-hydroxybenzaldehyde and bergapten showed activities: 
aldehyde oxidase inhibitor, CYP2A6 substrate, CYP2A 
substrate, CYP2E1 substrate and CYP1A2 substrate. 
However, 4-hydroxybenzaldehyde also showed nitrilase 
inhibitory activity, thioredoxin inhibitory activity and 
chymosin activity and bergapten also showed activities: 
HIF1A expression inhibitor and CYP2A11 substrate. The 
toxic effects showed by 4-hydroxybenzaldehyde were: 
weakness, vascular toxicity and fatty liver and bergapten 
showed the toxic effects: hypothermic and carcinogenic 
group 3. The results of PASS prediction studies are listed 
in Tables 9 and 10.

DISCUSSIONS

Molecular docking generates a score based on the 
binding of ligand and receptor. The lower binding affinity 
is represented by the higher binding energy, whereas 

Compound Name QPlogPC16a QPlogPoctb QPlogPwc QPlogPo/wd QPlogSe CIQPlogSf

4-hydroxybenzaldehy de 2.298 3.081 2.406 0.071 0.241 -0.401

Benzoic acid 2.536 4.474 4.803 -0.193 0.097 -0.284

Bergapten 4.392 9.129 8.804 -0.291 -0.714 -0.883

Psoralen 2.989 4.881 4.697 -0.358 0.075 -0.631

P-hydroxybenzoic acid 3.58 6.697 6.296 -0.813 0.948 -0.364

Table 7: List of the solubility tests of the selected ligands. The tests were carried out by QikPrep wizard of Maestro-Schrödinger Suite 2018-4. 
Here,

Name of the ligands HOMO (ineV) LUMO (ineV) Gap (ineV) Hardness (ineV) Softness (ineV) Dipole moment (in Debye)

4-hydroxybenzaldehyde -0.174 0.053 0.227 0.114 8.77 4.839

Benzoic acid -0.174 0.055 0.229 0.115 8.69 2.217

Bergapten -0.112 0.052 0.164 0.082 12.19 7.186

Psoralen -0.197 0.039 0.236 0.118 8.47 5.272

P-hydroxybenzoic acid -0.198 0.1 0.298 0.149 6.71 2.524

Table 8: The results of the DFT calculations of the selected ligands.
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the lower binding energy indicates a higher binding 
affinity [35,36]. According to the study proofs, the lowest 
glide energy provides the most appropriate result [37]. 
The docking of controls, isoniazid and rifampicin was 
successful with their target receptors. The control 
produced docking scores of -4.813 Kcal/mol and -6.018 
Kcal/mol, respectively as well as glide energies of 
-25.247 Kcal/mol and -29.728 Kcal/mol, respectively. 
They generated quite perfect scores in the docking study. 

4-hydroxybenzaldehyde exhibited the lowest binding 
energy of -6.062 Kcal/mol while docked against MTB 

Figure 8: The HOMO (left) and LUMO (right) structures of the selected ligands generated by the Jaguar wizard of Maestro-Schrödinger Suite 2018-4. A. 
4-hydroxybenzaldehyde, B. benzoic acid, C. bergapten, D. psoralen, E. p-hydroxybenzoic acid.

RNA polymerase and bergapten provided the lowest 
score -8.068 Kcal/mol while docked against InhA protein. 
Nevertheless, 4-hydroxybenzaldehyde generated 
the glide energy of -21.269 Kcal/mol, which was not 
exactly a good result since the result was relatively 
high compared to the other ligands while it was docked 
with MTB RNA polymerase. On the contrary, bergapten 
produced the lowest glide energy of -35.218 Kcal/mol, 
the most suitable score among the ligands when docked 
against the InhA protein. So, 4-hydroxybenzaldehyde and 
bergapten should be the best molecules to inhibit their 
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targets. It was further ensured by the MM-GBSA study. 
In the MM-GBSA study, the ΔGBind score is taken and 
the lowest (most negative) ΔGBind Score is invariably 
considerable [38-40]. 4-hydroxybenzaldehyde generated 
a ΔGBind score of -53.070 Kcal/mol, which was the 
lowest score among all the ligands while docked against 
MTB RNA polymerase and bergapten generated a ΔGBind 
score of -57.590 Kcal/mol among the ligands while 
docked against InhA protein. 4-hydroxybenzaldehyde 
generated 04 hydrogen bonds when docked against 
MTB RNA polymerase, the second most hydrogen bonds 
(bergapten was the first ligand with 05 hydrogen bonds). 
Contrastingly, bergapten generated the highest number of 
hydrogen bonds (08) when docked against InhA protein. 
That is why, in the molecular docking experiment, 
4-hydroxybenzaldehyde and bergapten were considered 
the best ligands to inhibit MTB RNA polymerase and InhA 
protein, respectively (Tables 2 and 3).

Evaluation of drug-likeness properties targets to boost 
drug discovery and development process. Topological 
polar surface area (TPSA) and molecular weight influence 
the drug molecule’s permeability through the biological 
barriers to the pathogen. Higher molecular weight and 

TPSA decrease the permeability and conversely. LogP 
is expressed according to Lipophilicity. It is delineated 
as the logarithm of the candidate molecule’s partition 
coefficient in the aqueous and the organic phase. 
The absorption of drug molecules inside the body is 
influenced by Lipophilicity. Higher LogP denotes lower 
absorption and inversely [41]. LogS value controls the 
solubility of a candidate molecule, and the lowest value 
is favored invariably. Besides, the greater strength of the 
interaction is indicated by the more significant number 
of hydrogen bonds and inversely [42-44]. Also, following 
the Ghose filter, a candidate drug should contain logP 
value between -0.4 and 5.6, molecular weight between 
160 and 480, molar refractivity between 40-130 and the 
overall number of atoms between 20 and 70, to certify as 
an efficacious drug [45]. According to the Veber rule, a 
candidate drug’s oral bioavailability relies on two factors: 
rotatable bonds£ 10 and polar surface £ 140 Å2 [46].

Moreover, as stated by the Egan rule, absorption of a 
candidate drug molecule counts on two factors: AlogP98 
(the logarithm of partition coefficient between n-octanol 
and water) and the polar surface area (PSA) [47]. 
Furthermore, The Muegge rule delineates that for a drug 

Sl no Biological activities

4-Hydroxbenzaldehyde Bergapten

Predicted LD50: NA Predicted LD50: 8100 mg/kg

Toxicity class: NA Toxicity class: 6

Pa Pi Pa Pi

1 Aldehyde oxidase inhibitor 0.951 0.003 0.747 0.013

2 CYP2A6 substrate 0.854 0.004 0.921 0.003

3 CYP2A substrate 0.854 0.004 0.922 0.004

4 CYP2E1 substrate 0.0843 0.004 0.757 0.004

5 CYP1A2 substrate 0.724 0.008 0.75 0.004

6 Nitrilase inhibitor 0.883 0.002 - -

7 HIF1A expression inhibitor - - 0.732 0.017

8 CYP2A11 substrate - - 0.923 0.001

9 Thioredoxin inhibitor 0.757 0.005 - -

10 Chymosin inhibitor 0.76 0.029 - -

Table 9: The results of the biological activities PASS prediction study of the two best selected ligands.

Predicted adverse and toxic 
effects

4-Hydroxbenzaldehyde Bergapten

Pa Pi Pa Pi

Weakness 0.862 0.011 - -

Toxic, vascular 0.813 0.015 0.743 0.004

Fatty liver 0.866 0.003 - -

Hypothermic - - 0.73 0.012

Carcinogenic, group 3 0.71 0.021 0.703 0.006

Table 10: The results of the adverse and toxic effects PASS prediction study of the two best selected ligands.
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like chemical compound to be considered an effective one, 
it must undergo a pharmacophore point filter established 
by some scientists [48]. In line with the drug-likeness 
property experiment, p-hydroxybenzoic acid should be 
regarded to be the best molecule because its molecular 
mass is relatively low (138.12 g/mol). Also, it has a minimal 
LogP value of 1.05, an elevated drug-likeness score of -1.5 
and the supreme drug score of 0.35. Furthermore, it has 
no allergic properties or tumorigenic effects are almost 
zero. Notwithstanding, it emerged to be an immensely 
mutagenic agent that contained the highest TPSA score 
of 57.53 Å². Psoralen also demonstrated an excellent 
molecular weight of 186.16 g/mol and reasonably fair 
LogS value, drug score of 0.27, TPSA score of 43.35 Å² 
and reproductive effectiveness, tumorigenic effects and 
irritant properties were absent. Yet, its performance was 
not so good as p-hydroxybenzoic acid. The performances 
of other ligand molecules in the drug-likeness studies 
were quite the same. Even so, all the ligands abide by 
Lipinski’s rule of five. Exclusively, bergapten obeyed the 
Egan Ghose Muegge and Veber rules of drug-likeness 
properties. 4-hydroxybenzaldehyde, p-hydroxybenzoic 
acid and Benzoic acid disobeyed both the Ghose and 
Muegge rules; also, psoralen infringed the Muegge rule.

The ADME/T-test aims to assess the pharmacodynamic 
and pharmacological properties of a candidate drug 
molecule inside the biological system. The blood-brain 
barrier is distinctly crucial for drugs that predominately 
target the brain cells. As oral administration is the most 
widely used route of the drug delivery system; hence, 
it can be anticipated that this drug’s absorption is high 
in intestinal tissue. The plasma membrane contains 
P-glycoprotein that expedites the transportation of many 
drugs. Thus, its inhibition influences the transportation 
of drug. The in vitro study of the drug permeability test 
uses the Caco-2 cell line and its permeability indicates 
easy absorption of the drug in the intestine. Drugs that 
are absorbed orally move across the blood flow and 
then deposit in the liver. Metabolism of these drugs 
takes place in the liver by the cytochrome P450 enzyme 
family. Afterward, the modified inactivated drugs are 
excreted via urine or bile. Hence, if any enzyme of the 
cytochrome P450 family enzyme is inhibited, it might 
alter the biodegradation of the drug molecule [49-51]. 
A significant pharmacological criterion is the binding of 
drugs to the membrane-bound protein that affects the 
pharmacodynamics of the drugs and their circulation 
and excretion. The competency of a drug confides in 
the magnitude of its binding with plasma protein. The 
diffusion of a drug can occur smoothly through the cell 

membrane if its binding to the membrane-bound proteins 
is less effective and vice versa. Drug half-life refers to the 
time it requires for diminishing the concentration of a 
drug by 50% inside the body. If a drug’s half-life is very 
high, the drug will remain in the body for a long time. 
For this reason, the doses of the drug are determined 
according to its half-life [52-54]. There is a protein found 
in the heart muscle called HERG, which moderates the 
heart rhythm. There are various blocking agents, which 
can block HERG and hampers its activity. This action 
results not only in cardiac arrhythmia but also in death. 
The human liver is the principal site of different metabolic 
reactions. It is intensely sensitive to the adverse and 
toxic effects of different xenobiotic agents. Human 
hepatotoxicity (H-HT) is characterized by all forms of 
injury to the liver, which may eventually cause organ 
failure and death. A mutagenicity assay called the Ames 
test is applied for determining the mutagenic chemicals. 
Mutations are caused by several mutagenic chemicals 
which can develop cancer. When the administration of 
any drug causes injury to the liver, it is known as drug 
induced liver injury (DILI). DILI is one of the causes 
which may give rise to miscellaneous liver complicacies 
[55-76].

CONCLUSION

Five agents known to have potential anti-tubercular 
properties were used to analyze in the experiment. 
Considering all the parameters, all the plant-derived anti-
tubercular agents had very good inhibitory activities on 
the MTB. The various tests of in silico biology that were 
used in the experiment, like the molecular docking 
study, drug-likeness property experiment, ADME/T-test, 
pharmacological property analysis, solubility and DFT 
calculations as well as the PASS prediction study had 
confirmed that 4-hydroxybenzaldehyde and bergapten 
were best agents among the selected ligands as well as 
their superiority over the two commercials, widely used 
drugs, rifampicin and isoniazid. For this reason, these two 
agents can be used effectively to fight against tuberculosis. 
4-hydroxybenzaldehyde can be acquired from a variety 
of sources from nature, like the plant Cinnamomum 
kotoense and bergapten can be acquired from the plant 
Fatoua pilosa. For this reason, these plants can be used 
effectively to treat tuberculosis. Moreover, in nature, a 
lot of other plants can also be found containing these 
agents. However, more in vivo and in vitro researches 
should be carried out to finally confirm their activities. 
Moreover, more researches should be conducted on the 
other agents to identify their efficacy against TB since 
they also gave quite good results in the tests carried out 
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in the experiment. Hopefully, this study will help the 
researchers in identifying the potential anti-tubercular 
phytochemicals.
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