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Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak in China has caused so 
many deaths with a significant number of confirmed cases around the world. This virus’s highly contagious 
nature has raised the scientific community’s concern to find a cure to treat coronavirus disease (COVID-19) 
caused by the viral infection. In this study 1615, FDA approved ligand structures were analyzed to identify 
the best possible therapeutic inhibitor(s) for SARS-CoV-2 main protease. Upon sequential computational 
experiments, Lindane (Induced Fit Docking; IFD Score: -594.02 Kcal/mol), Gluconolactone (IFD Score: 
-585.77 Kcal/mol), and Mitoxantrone (IFD Score: -582.33 Kcal/mol) were found to be the best inhibitors of 
SARS-CoV-2 main protease. Then these compounds were analyzed in different post-screening experiments 
where they were also observed to perform well. This study will contribute to the current efforts of scientific 
society to secure treatment for COVID-19. However, further in vivo and in vitro experiments might be 
required to properly validate the findings of this study.
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INTRODUCTION

Coronavirus is a type of pathogen that causes potentially 
deadly diseases in mammals and birds [1]. In humans, 
they may cause severe to mild respiratory, enteral, hepatic, 
or neurologic diseases with symptoms of fever, cough, 
and shortness of breath [2]. They are enveloped single-
stranded, positive-sense RNA viruses. It is currently 
known as the largest RNA genome and is phenotypically 
and genotypically diverse [3].

Coronavirus resides in the family Coronaviridae (genera- 
coronavirus and torovirus) in the order nidovirales [4]. 
They are widely spread in bats worldwide and found in 
many other species such as birds, dogs, pigs, mice, cats, 
and humans [5]. Members of the coronavirus family 
possess a large genome that ranges from 27-32 kb. This 
coronavirus genome encodes for 5/ replicase polyprotein 
containing two reading frames ORFs 1a and 1b, which in 
order, encodes for all the enzymes necessary for viral 
RNA replication [6].

According to serology and genome phylogeny, coronaviruses 
are classified into four genera, termed Alpha, Beta, Delta, and 
Gramma coronavirus [7]. So far, seven human coronaviruses 
have been identified, containing two alpha CoVs (HCoV-
229E and HCoV-NL63) and five beta CoVs (HCoV-OC43, 
HCoV-HKU1, severe acute respiratory syndrome CoV (SARS-
CoV), middle east respiratory syndrome CoV (MERS-CoV) 
and most recent SARS-CoV-2 [8].

In the 1960s [9], two human coronaviruses- human 
coronavirus 229E (HCoV- 229E) and human coronavirus 
OC43 (HCoV-OC43) were known to infect humans [10] in 
the lower respiratory tract [11]. After this, a third human 
coronavirus, SARS-CoV, was discovered responsible 
for severe acute respiratory syndrome [12]. It was first 
identified in November 2002, in China’s Guangdong 
region [13,14]. The world health organization (WHO) 
declared that the disease was spread to 29 areas 
worldwide in 2003. Eight thousand ninety-eight 
individuals were infected, and among them, 774 death 
cases were observed [15]. After the SARS epidemic, 
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the two other human coronaviruses, HCoV-NL63 and 
HCoV-HKU1 were discovered quickly. On 23 September 
2012, the WHO found a new coronavirus- middle east 
respiratory syndrome coronavirus (MERS-CoV). In 2012 
and December 2019, 2465, MERS-CoV infection cases 
were confirmed, and 850 deaths were reported from 27 
countries to the WHO [10-16].

However, these two highly pathogenic coronaviruses 
(SARS-CoV and MERS-CoV) caused global epidemics 
with terrifying morbidity and mortality. In December 
2019, another human coronavirus outbreak, causing the 
COVID-19, was recorded in Wuhan City, Hubei Province, 
China. According to epidemiological studies, this outbreak 
was associated with Wuhan’s seafood market [17,18]. 
Based on phylogenetic analysis of the complete viral 
genome (29,903 nucleotides), it was demonstrated that 
SARS-CoV-2 was most nearly related (89.1% nucleotides 
similarity) to the SARS-like coronavirus [19].

And the protein sequences of SARS-CoV-2 main protease 
(CMP) and SARS-CoV main protease have 96.1% sequence 
identity (Figure 1).

Viral main protease processes other viral precursor 
proteins for proper functioning, and therefore blocking 
their activity is an effective strategy in developing 
antiviral drugs [22,23]. In this study, a total of 1615 FDA 

approved compounds were docked against SARS-CoV-2 
main protease. The sequential computational analysis 
led to identifying the best three compounds that were 
then utilized in another post-screening study (Figure 2).

Figure 1: (A) Superimposition of SARS-CoV-2 main protease (Red; PDB Id: 6LU7) and SARS- CoV main protease (Green; PDD Id: 2H2Z) 
[20,21]. (B) Alignment of SARS-CoV-2 and SARS- CoV main protease protein sequences.
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Figure 2: Strategies employed in the overall study.
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MATERIALS AND METHODS

Molecular Docking

Protein preparation

PDB format of SARS-CoV-2 main protease (SMP) (PDB ID: 
67U7) was downloaded from Protein Data Bank (www.
rcsb.org) in the three-dimensional crystallographic form 
[24], which has an inhibitor protein attached to its active 
site. To prepare and process Protein Preparation Wizard’s 
protein structure in Maestro Schrödinger Suite (v11.4) 
was used. Assigning the bond orders to the structures, 
hydrogens were added to the heavy atoms. All of the water 
molecules were erased from the atoms; missing side 
chains were adjusted in the protein structure backbone 
using Prime as well as het states were generated with 
Epik at pH 7 ± 2 [25]. Optimized Potentials for Liquid 
Simulations force field (OPLS_2005) in the suite was 
utilized, setting the RMSD (root-mean- square-deviation) 
to 30 Å to refine and minimize the protein structure. Any 
extraordinary water under 3H-bonds to non-water was 
erased in the minimization step.

Ligand preparation

A total of 1615 FDA approved drug (ligand) structures 
were downloaded in sdf format from ZINC database 
(https://zinc.docking.org/) [26]. LigPrep wizard of 
Maestro Schrödinger suite was used to prepare and 
process these ligand structures [27]. Minimized 3D 
structures of the ligands were generated using Epik2.2 
within pH 7.0 +/- 2.0 in the suite. Finally, minimization 
was carried out again using the OPLS_2005 force field, 
which generated maximum 32 possible stereoisomers 
depending on available chiral centers on each molecule.

Receptor grid generation

Receptor grid was generated using default Van der Waals 
radius scaling factor 1.0 and charge cutoff 0.25, which 
was then subjected to the OPLS_2005 force field for the 
minimized structure in Glide [28]. The grid generated 
a cubic box around the active site (co-crystallized 
reference ligand) of the target molecules. Finally, the grid 
box dimension was then adjusted to 14 Å ×14 Å×14 Å for 
docking to be carried out.

Glide standard precision (SP) and extra precision 
ligand docking

To compare docking parameters, both Extra precision 
(XP) ligand docking and Standard precision (SP) ligand 
docking methods are used that are suitable and accurate 
for small number and the large number of ligand 

molecules, respectively [29,30]. To carry out docking of 
the ligand molecules, Van der Waals radius scaling factor 
0.80 and charge cutoff 0.15 were set, which assigned final 
scores according to the docked ligand’s pose within the 
binding cleft of the receptor molecule. Discovery Studio 
Visualizer (v4.5) was utilized to analyze the best possible 
poses and types of ligand-receptor interactions [31].

Prime MM-GBSA rescoring

The ligands were subjected to Molecular mechanics-
generalized born and surface area (MM- GBSA) rescoring 
with Prime module of Maestro Schrödinger suite for 
further evaluation after SP XP ligand docking. MM-GBSA 
assigns a more accurate scoring function, which in turn 
improves the overall free binding affinity score upon 
the reprocessing of the docked ligand to the biological 
macromolecules by the utilization of an implicit 
solvent [32-34]. This technique generally combines 
OPLS molecular mechanics energies (EMM), surface 
generalized born solvation model for polar solvation 
(GSGB), and a nonpolar salvation term (GNP) for total 
free energy (ΔGbind) calculation. The following equation 
calculated the total free energy of binding:

ΔGbind = Gcomplex – (Gprotein – Gligand), where, G= 
EMM + GSGB + GNP

Induced fit docking

Ten best compounds with the lowest MM-GBSA scores 
were selected for further evaluation since it is the more 
robust scoring method. To obtain more accurate docking 
result, the chosen ligand molecules were subjected to 
induced fit docking (IFD) that generates the native poses 
of the ligands bound to its target [32-35]. After having 
generated a grid around the receptor’s co- crystallized 
ligand structure, the OPLS_2005 force field was applied 
again, and the five best ligands were docked rigidly. Van 
der Waals screening for the receptor (0.70) and ligand 
(0.50) was set, residues within 2 Å were refined in 
order to generate the two best possible posses with the 
standard precision method.

Structure-based Pharmacophore Modeling

Pharmacophore modeling is one of the essential tools 
used for successful drug discovery. It is usually used 
for both lead identification and lead optimization and 
aids in the prompt understanding of 2D or 3D level 
identity of molecules by schematically depicting the 
critical elements of molecular recognition [36,37]. 3D 
structure-based pharmacophore modeling was obtained 
using LigandScout 4.4.1 Essential [38]. LigandScout 

http://www.rcsb.org/
http://www.rcsb.org/
https://zinc.docking.org/


Citation: Reshad RAI, Ali H, Ghosh C, Ratul ZA, Karim MMA, Showhardo AW, et,al. (2021) In Silico Analysis and Computational Assessment of 
Potential Inhibitors of SARS-Cov-2 Main Protease. J Virol Infect Dis. 2021;2(1):1-12.

Page 4 of 12
J Virol Infect Dis. (2021)
Volume 2 Issue 1 

autonomously generates pharmacophore features 
like- hydrogen bond donors, hydrogen bond acceptors, 
hydrophobic, positive and negative ionizable, aromatic 
interactions, and 3D geometries of the intended bioactive 
molecules using an advanced algorithm [39].

ADME/T Prediction

In silico prediction of the ADME/T profile of candidate 
drug molecules, it helps pharmaceutical industries select 
the best candidates, which reduces the time and cost of 
the drug discovery approach [40-42]. ADME/T profile for 
three selected ligand molecules (Table 3) that performed 
well in the docking experiment was analyzed using an 
online based server, i.e., admetSAR 2.0 (http://lmmd.
ecust.edu.cn/admetsar2) and pkCSM (http://biosig.
unimelb.edu.au/pkcsm/prediction) to predict different 
pharmacokinetic and pharmacodynamic properties. 
These are including blood- brain barrier permeability, 
human abdominal absorption, AMES toxicity, Cytochrome 
P (CYP) inhibitory promiscuity, carcinogenicity, 
mutagenicity, and Caco-2 permeability [43,44].

PASS (Prediction of Activity Spectra for Substances) 
Prediction

Prediction of Activity Spectra for Substances (PASS) 
estimates the tentative biological activities of query 
compounds based on their native chemical structure. PASS 
predicts the action of a compound based on Structure-
Activity Relationship Base (SAR Base), which assumes 
that the activity of a compound is related to its structure. 
It works by comparing the 2D structure of a compound 
relative to another compound having biological activities 
recorded in the database with almost 95% accuracy [45]. 
Probable antiviral activities and other intended activities 
against proteins involved in mediating viral infection of 
the selected molecules were predicted using PASS online 
server (http://www.pharmaexpert.ru/passonline/) [46].

DFT (Density Functional Theory) Calculation

DFT calculation was carried out by using minimized 
ligand structures from LigPrep. This calculation theory 
uses the Jaguar panel of Maestro Schrödinger Suite, 
which uses Becke’s three- parameter exchange potential 
as well as Lee-Yang-Parr correlation (B3LYP) theory with 
6-31G* basis set [47-50]. Different quantum chemical 
properties such as surface properties (MO, density, 
potential) and Multipole moments were calculated along 
with HOMO (Highest Occupied Molecular Orbital) and 
LUMO (Lowest Unoccupied Molecular Orbital) energy. 
Then the global frontier orbital was analyzed as well as 
hardness (η) and softness (S) of selected molecules were 
calculated using the following equation as per Parr and 
Pearson interpretation and Koopmans theorem [51,52]. 
The DFT calculation result is summarized in Table 6, 
and the HOMO and LUMO occupation of the ligands is 
illustrated in.

η = (HOMOℇ-LUMOℇ)/2, S = 1/ η

RESULTS

Molecular Docking Study

Among all the ligand molecules used in SP, XP, and MM-
GBSA scoring, 10 molecules were selected based on the 
lowest binding free energies since it is the most rigorous 
scoring method mentioned earlier (Table 1). Three best 
performing ligand molecules were selected based on the 
IFD scores, which is considered a more accurate way of 
predicting binding poses than SP and XP from 10 selected 
molecules that showed slight variation between SP and XP 
docking scores. These three ligand molecules were Lindane, 
Gluconolactone, and Mitoxantrone (Table 2), and these 
ligands were found to exhibit the lowest IFD scores (Table 
3). As a result, these compounds were utilized for further 
study, and others were opted out from further consideration.

Compound ID SP Docking Score 
(Kcal/mol )

XP Docking Score 
(Kcal/mol )

Glide Ligand 
Efficienc y

Glid e 
ecoul Glide evdw Glide energ 

y
MM- GBSA ΔGbind 

(Kcal/mol )
 ZINC00000381086 0   -6.749 -5.328 -0.078 -1.34 - 30.03 3 - 31.370   -77.03
ZINC00024520492 4 -5.874 -4.751 -0.313 - 1.227 - 21.85 3 - 23.080 -64.07
 ZINC00002130321 0   -5.775 -4.460 -0.204 0.166 - 33.03 4 - 32.868   -62.14
ZINC00000253970 2  -5.214 -4.134 -0.067 - 4.317 -41.32 - 45.637  -61.05
ZINC00001970230 9  -5.689 -5.123 -0.258 - 0.352 -31.93 - 32.282  -59.59
 ZINC00000089659 5   -4.893 -4.477 -0.213 -3.45 - 26.94 3 - 30.393   -54.25
 ZINC00000379479 4   -5.683 -4.172 -0.264 - 1.985 - 23.89 9 - 25.884   -53.43
 ZINC00000000043 1   -6.085 -4.956 -0.236 - 5.536 - 34.79 2 - 40.328   -53.18
 ZINC00000640973 5   -5.116 -4.111 -0.316 0.987 - 27.32 1 - 26.334   -52.77
 ZINC00000395288 1   -5.261 -3.853 -0.148 - 2.888 - 34.79 6 - 37.684   -45.96

Table 1: Result of SP and XP docking and free binding energy calculation.

http://lmmd.ecust.edu.cn/admetsar2
http://lmmd.ecust.edu.cn/admetsar2
http://biosig.unimelb.edu.au/pkcsm/prediction
http://biosig.unimelb.edu.au/pkcsm/prediction
http://www.pharmaexpert.ru/passonline/
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Binding mode of lindane with SARS-CoV-2 main 
protease (SMP)

Lindane is one of the selected best performance 
showing ligand molecules that interacted with 5 amino 
acids within the binding pocket and formed a total of 6 
interactions when docked with SMP with a better IFD 
score (-594.02 Kcal/mol) as well as Glide Gscore (-6.25 
Kcal/mol) (Table 2). It formed one non-conventional 
hydrogen bond with His41 amino acid residue at 2.92 
Å distance apart, one Pi-Pi T shaped interaction with 
His41, and one halogen interaction with Arg188 amino 
acid residue. It also formed additional hydrophobic 
interactions, i.e., Alkyl and Pi-Alkyl interactions with 

Cys145, Met49, Met165 amino acid residues within the 
binding cleft of CMP (Figure 3).

Binding mode of gluconolactone with SARS-CoV-2 
main protease (SMP)

Gluconolactone is another best performance showing 
ligand molecule that generated an IFD score of -585.77 
Kcal/mol and Glide Gscore of -3.97 Kcal/mol to dock 
with SMP and formed total 6 interaction when interacted 
with 4 amino acids within the binding pocket (Table 2). 
It formed one conventional hydrogen bond with Glu166 
amino acid residue at 2.27 Å distance apart and two 
non-conventional interactions with His41 and Arg188 
amino acid residues at 2.78 and 2.59 Å distance apart, 

Compound ID Compound 
Name

MM- GBSA
ΔGbind

(Kcal/mol)

Glide Gscore 
(Kcal/mol)

IFD Score
(Kcal/mol)

Interacting 
Amino Acids

Bond 
Distance 

(Å)

Type of 
Interaction

Interaction 
Category

ZINC000245204924 Lindane -64.07 -6.25 -594.02

Cys145 4.80 Alkyl Hydrophobic
Met49 4.75 Alkyl Hydrophobic
Cys145 5.22 Alkyl Hydrophobic
Met49 5.30 Pi-Alkyl Hydrophobic

Met165 3.67 Alkyl Hydrophobic

His41 5.11 Pi-Pi T
Shaped Hydrophobic

Met165 5.48 Pi-Alkyl Hydrophobic

His41 2.92 Hydrogen
Bond

Non-
conventional

Met165 4.92 Alkyl Hydrophobic
His41 4.15 Pi-Alkyl Hydrophobic

Arg188 3.09 Chlorine
Interaction Halogen

His41 3.65 Pi-Alkyl Hydrophobic
Met49 3.30 Alkyl Hydrophobic

ZINC000002539702 Gluconolactone -61.05 -3.97 -585.77

His41 4.77
Pi-Pi	

T
Shaped

Hydrophobic

Glu166 2.27 Hydrogen
Bond Conventional

His41 2.78 Hydrogen
Bond

Non-
conventional

Arg188 2.59 Hydrogen
Bond

Non-
conventional

Met49 4.95 Pi-Alkyl Hydrophobic

ZINC000003794794 Mitoxantrone -53.43 -3.38 -582.33

Met165 2.95 Pi-Alkyl Hydrophobic

His41 2.70 Hydrogen
Bond Conventional

Ser144 2.71 Hydrogen
Bond Conventional

Asn142 2.85 Hydrogen
Bond

Non-
conventional

Gly143 2.04 Hydrogen
Bond Conventional

Table 2: The results of induced fit docking between the best performing ligands and SMP.
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Zinc ID Compoun
d Name IUPAC Name Chemical

Formula 2D structure

   ZINC0002452 04924    Lindane    1,2,3,4,5,6- hexachlorocyclohexane C6 H6 Cl6

 

   ZINC0000025 39702    Gluconolac 
tone

  (3R,4S,5S,6R)-3,4,5-trihydroxy- 
6-(hydroxymethyl)oxan-2-one    C6 H10 O6

     ZINC0000037 
94794      Mitoxantro ne

 1,4-dihydroxy-5,8-bis[2-(2- 
hydroxyethylamino)ethylamino] anthracene-
9,10-dione

    C22 
H28N4O6

Table 3: Best performed ligand molecules in the overall molecular docking experiment.

Figure 3: Representation of best possible poses (left) and ligand-receptor interactions (right) between the docked complexes.
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respectively. Additional hydrophobic Pi-Alkyl interaction 
was also formed with Met49 amino acid residue within 
the binding cleft of CMP (Figure 4).

Binding mode of mitoxantrone with SARS-CoV-2 
main protease (SMP)

Mitoxantrone generated an IFD score of -582.33 Kcal/
mol and Glide Gscore of -3.38 Kcal/mol to dock with SMP 
and formed a total 6 interactions interacting with 4 amino 
acids (Table 2). It formed three conventional hydrogen 
bonds with His41, Ser144, and Gly143 amino acid 
residue at 2.70, 2.71, and 2.04 Å distance apart. Moreover, 
Mitoxantrone also created one non-conventional hydrogen 
bond interaction with Asn142 amino acid residue at 2.85 
Å distance apart, respectively. Again, it formed additional 
hydrophobic Pi-Alkyl interactions with Met165 amino acid 
residue within the binding cleft of SMP (Figure 4).

Pharmacophore Modeling

The result of pharmacophore modeling is represented 
in (Figure 4). Lindane was reported to show only 
hydrophobic features, and Met165 and Met49 amino acid 
residues were shown to contribute to the bond formation 
with the pharmacophoric quality. Gluconolactone formed 
three hydrogen bond donor features and one hydrogen 
bond acceptor feature, and His41, Met165, and Glu166 
amino acid residues were shown to contribute to the 
bond formation with the pharmacophoric features. 
Again, Mitoxantrone formed three hydrogen bond donor 
features within the binding site of CMP.

ADME/T Prediction

ADME/T (absorption, distribution, metabolism, 
excretion, and toxicity) profile was analyzed for all 
selected ligand molecules, and the results are summarized 
in (Table 4). The best three selected ligand molecules 

(Lindane, Gluconolactone, and Mitoxantrone) showed 
high oral bioavailability. Lindane has higher Caco2 cell 
line permeable capability compare to Gluconolactone 

Figure 4: Three dimensional (left) and Two dimensional (right) representation of structure-based pharmacophore modeling between 
selected ligand molecules and SMP. Hydrogen bond donor, hydrogen bond acceptor, and hydrophobic features are represented as green, 
red, and yellow.

Properties Lindane Gluconolactone Mitoxantrone
Absorption
Human intestinal
absorption High Low High

Human oral
bioavailability High High High

Caco-2 
permeability High Low Low

Distribution
P-glycoprotein 
substrate No No Yes

P-glycoprotein
inhibitor No No No

Blood-brain 
barrier
penetration

Yes Yes No

Metabolism
CYP3A4 substrate No No No
CYP2C9 substrate No No No
CYP2D6 substrate No No No
CYP3A4 inhibition No No No
CYP2C9 inhibition No No No
CYP2D6 inhibition No No No

Excretion
Total clearance 1.053 0.678 1.424
OCT2 substrate No No No

Toxicity
AMES toxicity No No Yes
Hepatotoxicity No No Yes
hERG inhibition No No No
Eye irritation Yes No No
Acute oral toxicity III IV III

Table 4: Results of ADME/T tests of best selected ligands. OCT2: 
Organic Cation Transporter 2; hERG: Human ether-a-go-go related 
gene, CYP: Cytochrome P450
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and Mitoxantrone, respectively. Gluconolactone showed 
less human intestinal absorption, whereas Lindane 
Mitoxantrone’s absorption rate was high. Plasma 
membrane protein, P-glycoprotein, was not inhibited by 
any of the best-selected ligand molecules; Mitoxantrone 
acted as a substrate. Lindane and Gluconolactone 
showed the blood-brain permeable capability, but none 
of the ligands showed the sign as either inhibitor or 
substrate of CYP3A4, CYP2D6, CYP2C9, and OCT2. None 
of them was reported to be substrates of OCT2 (Organic 
Cation Transporter 2). Mitoxantrone was predicted to 
have Ames toxicity and hepatotoxicity, whereas Lindane 
was shown to induce eye irritation. On the contrary, 
Mitoxantrone and Lindane showed type III acute oral 
toxicity, and Gluconolactone showed type IV.

Pharmacological Activity Prediction

In order to determine the association of ligand molecules 
with other antiviral activities based on their native 
structures, their pharmacological activities were 
predicted, and the result is represented in Table 5. 
Gluconolactone showed better antiviral activity against 
different viruses and other actions against different 
enzymes involved in viral infection mediation. However, 
Mitoxantrone was predicted to have moderate activity 
followed by Lindane.

Analysis of Frontier’s Orbitals

Detailed HOMO energy, LUMO energy, energy gap 
(HOMO-LUMO gap), hardness, and softness of the 
selected best compounds are summarized in Table 6, and 
the HOMO and LUMO occupation of the ligand molecules 
is illustrated in (Figures 5 and 6) for each compound. The 
highest energy gap was predicted for Lindane, and the 
lowest gap was observed for Mitoxantrone.

According to the energy gap, the stability order of the 
compounds is: Mitoxantrone>Gluconolactone>Lindane. 
Along with the HOMO and LUMO energy, each 
compound’s dipole moment was also calculated, and 
based on the dipole moments, the molecules’ stability 
order is Mitoxantrone>Lindane>Gluconolactone.

DISCUSSION

Due to the utilization of specific algorithms and scoring 
function as well as the particular pose of ligand-receptor 
interaction, molecular docking is the most commonly 
used drug discovery approach by the researchers [53,54]. 
In this experiment 1615, FDA-approved ligand structures 
were downloaded from the ZINC database, and then 
they were subjected to SP, XP, and binding free energy 
calculation. Out of them, 10 best performing ligand 
molecules were selected based on their lowest binding 
energy, reflecting the higher affinity of ligand molecules 

Activities
Lindane Gluconolacton e Mitoxantrone

Pa Pi Pa Pi Pa Pi
Antiviral (Picornavirus) 0.546 0.033 0.704 0.005 - -
Antiviral (Poxvirus) 0.373 0.034 0.678 0.011 0.348 0.040
Simian immunodeficiency virus proteinase inhibitor 0.525 0.016 0.466 0.029 0.286 0.138
Antiviral (Adenovirus) 0.391 0.033 0.407 0.026 0.441 0.016
Antiviral (Influenza) 0.265 0.116 0.687 0.006 0.334 0.071
Antiviral (Herpes) 0.429 0.024 0.512 0.008 0.318 0.079
Antiviral (Hepatitis B) - - 0.478 0.005 0.166 0.143
Antiviral 0.375 0.018 0.361 0.021 - -
Antiviral (Rhinovirus) - - 0.437 0.057 - -
RNA-directed RNA polymerase inhibitor 0.438 0.030 0.484 0.013 - -
RNA directed DNA polymerase inhibitor 0.503 0.009 0.408 0.017 0.213 0.076
HIV-2 reverse transcriptase inhibitor 0.305 0.009 0.185 0.041 0.207 0.031
3C-like protease (Human coronavirus) inhibitor 0.297 0.027 0.231 0.108 - -

Table 5: Result of Pharmacological Activity prediction of selected ligand molecules. Pa>0.7: Compound is very likely to have activity; Pa>0.5: 
Compound is expected to have activity

Compound Name HOMO LUMO Gap Hardness (η) Softness (S) Dipole Moment
Lindane -0.30473 -0.03623 0.2685 0.13425 7.4487 2.2069
Gluconolactone -0.27343 -0.02362 0.24981 0.124905 8.0060 4.6608
Mitoxantrone -0.17629 -0.08850 0.08779 0.043895 22.8003 2.0253

Table 6: Result of DFT calculation. The unit of HOMO, LUMO, gap, hardness, and softness are in Hartree, and the unit of dipole moment is in Debye.
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for their receptors. The selected ligand molecules were 
again subjected to induced fit docking (IFD) to obtain 
a more accurate docking result (Table 1). Based on 
the induced-fit docking experiment scores, Lindane, 
Gluconolactone, and Mitoxantrone were selected as the 
best inhibitors of SMP, and their drug-like potentials 
were then evaluated (Tables 2 and 3). In this study, 
Lindane, Gluconolactone, and Mitoxantrone showed the 
lowest binding energies and formed multiple numbers 
of hydrogen bonds and hydrophobic interactions within 
the binding site of SMP (Figure 3). These interactions are 
significant for serving biological purposes, making the 
ligand-receptor complex more efficient [55,56].

In SARS Coronavirus main protease His41 and Cys145 
amino acid residues form the catalytic dyad of the enzyme’s 
active site [57]. In our study, the best-selected ligand 
molecules formed hydrogen bonds and hydrophobic 
interaction with either His41 or Cys145 amino acid 
residue of the active site of CMP. They thus predicted 
to interfere with the normal function of the protease. 
Pharmacophore modeling is a fascinating technique for 
de novo drug designing and lead optimization. Structure-
based pharmacophore modeling uses a 3D structure 
of a macromolecular target or a target-ligand complex 

to predict pharmacophoric features of the complex. As 
a part of the protocol subsequently, structure-based 
pharmacophore modeling utilizes an assessment of the 
complementary chemical features of the binding site and 
their spatial orientation relationships, which results in a 
pharmacophore model assembly with selected features, 
i.e., hydrogen bond donors, hydrogen bond acceptors, 
and hydrophobes [58,59]. The best-docked compounds 
were reported to have significant hydrogen bond donors, 
acceptors, and hydrophobic features (Figure 4).

Considering the most concerning issues such as blood-
brain barrier permeability for drugs that usually target 
cells of the central nervous system (CNS), determining 
the most efficient route of drugs, the highly absorbed 
organs or tissues, the ADME/T ( absorption, distribution, 
metabolism, excretion, and toxicity) profile of drugs 
is analyzed during the development of a potential 
drug [60,61]. Plasma membrane proteins such as 
P-glycoproteins play a significant role in the side human 
body’s drug transport mechanism. Human intestinal 
tissue permeability of a drug is ensured by the Caco2 cell 
line permeability of that drug [62-64]. Inside the human 
body, drug interaction, metabolism, and drug excretion 
outside the body are regulated by the Cytochrome P450 

Figure 5: The HOMO and LUMO occupation for the selected compounds. Blue and red is positive and negative in their wave function.
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family of enzymes. Inhibition of these enzymes leads to 
the normal process’s impairment and may cause acute 
drug toxicity, slow clearance, and malfunction of drugs 
[65,67]. AMES toxicity parameter is used to examine 
the toxicity endpoint of chemicals under investigation 
[68,69]. hERG (Human ether-a-go-go related gene) 
channels are the voltage-gated potassium ion channels 
that play crucial roles for potassium ion transport 
through the cell membrane, and this hERG potassium 
channel can be blocked by structurally and functionally 
different as well as unrelated drugs that may raise off-
target drug interaction. To minimize the undesirable drug 
interaction, compounds for hERG channels are screened 
during the early lead optimization process [70]. The 
substrates of Renal OCT2 (organic cation transporter 2) 
are readily excreted through urine, and this transporter 
is essential for drugs and xenobiotic excretion through 
the kidney [71]. Lindane was predicted to have better 
ADME/T profiles than the other two molecules (Table 4).

Pharmacological activity (PASS prediction) refers to 
the Probability of activity (Pa) and the Probability of 
inactivity (Pi) of a compound, and the result of the forecast 
ranges from 0.000 to 1.000. The activity of a compound 
can only be possible When Pa>Pi [72]. A compound is 
considered highly active when its Pa value is greater than 
0.7 (Pa>0.7), and there is a possibility of that compound 
being analog to a known pharmaceutical agent is also 
high. A compound also shows activity when its Pa value 
is greater than 0.5 but less than 0.7 (0.5<Pa<0.7), but the 
possibility of being analogue to a known pharmaceutical 
agent is low, and when a compound has Pa value less 
than 0.5 (Pa<0.5), it is considered as a less active 
compound [73]. The selected compounds were analyzed 
to determine the antiviral activities and activities 
against proteins and enzymes involved in viral infection, 
and Gluconolactone was predicted to have better 
pharmacological activities than other selected molecules 
(Table 5). The HOMO-LUMO gap defines a compound’s 
stability, and HOMO refers to a constraint portion in a 
molecule capable of donating electrons, whereas LUMO 
is responsible for accepting electrons. To determine 
the stability of the best selected ligand molecules, their 
HOMO and LUMO energy were analyzed (Figure 5). It 
is required for a compound to have the highest gap to 
undergo a chemical reaction more efficiently [74,75]. 
Lindane was predicted to have a more positive energy gap 
than other molecules (Table 6). Finally, upon continual 
computational exploration, Lindane, Gluconolactone, and 
Mitoxantrone were identified as the best inhibitors of 
SARS-CoV-2 main protease. Lindane performed slightly 

better than the other two ligand molecules in different 
post- screening studies. This study recommends that 
Lindane, Gluconolactone, and Mitoxantrone be the best 
SMP inhibitors that could be directed against SARS-CoV-2 
infection. These compounds should also work against 
SARS coronavirus main protease since both the proteases 
are structurally almost identical (Figure 1).

However, computational exploration is mostly based 
on the modeling of the molecules and sometimes may 
come out with faulty outcomes, although the growing 
techniques have increased its fidelity of prediction, and 
these techniques have become famous for computer-
aided drug designing in the last few decades [76]. So, 
further laboratory experiments might be required to 
strengthen the findings of this study.

CONCLUSION

The Wuhan Novel Coronavirus outbreak in China caused 
many deaths worldwide, and many people got infected 
just after few days of the outbreak. Finding a cure for 
this nasty virus has become the primary concern of the 
scientific community. Our study screened a total of 1615 
FDA- approved structures against SARS-CoV-2 main 
protease and gradually explored Lindane, Gluconolactone, 
and Mitoxantrone as the best inhibitors of this enzyme. 
These compounds were then subjected to evaluation 
in different drug-like parameter defining experiments 
where they were also performing sound. The authors 
believe this study will uphold the scientists’ efforts to 
find a cure against SARS-CoV-2 infection. However, the 
authors suggest further in vivo and in vitro experiments 
for proper validation of this experiment.
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